下面是小编整理的六年级工程问题应用题教学反思,欢迎您阅读分享借鉴,希望对您有所帮助。如果这19篇文章还不能满足您的需求,您还可以在本站搜索到更多与六年级工程问题应用题教学反思相关的文章。
上课开始,我让学生进一步了解:工作总量/工作效率=工作时间。为新知识的展开作了解题思路的铺垫。
同时让学生初步掌握工作总量、工作效率,不是具体数量时,应如何表示的方法。
(资料图)
从知识上为学习工程问题作了适当的铺垫。上课时,我让学生“估一估”,“算一算”,“列一列”,教师再“点一点”,“拔一拔”,学生也算是自主探索,完成了新知识的的学习。课后,我进行反思,觉得应为学生创设主动探索的情境,会效果更好。
如在例题出示前先让学生试做一个准备题:一条公路长60千米,甲队单独完成需要20天,乙队单独做要30天,两队合做,要多少天完成?然后改变题中的条件,工作总量为120千米、30千米,其它条件不变,让学生猜测:两队合做多少天完成?(学生肯定会有争议),接下来让学生分组讨论,合作完成。最后擦掉具体的工作总量,把它改成一件工程,让学生尝试完成。这里,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性。()让学生在实践中获得解决问题的方法,得到学习的乐趣。
工程应用题是分数应用题的一种,它具有明显的特点和特定的解答规律,因此我在设计时体现了以下几个特点:
1、把握“契机”创设情境
教学中我从学生已学过的工程应用题入手,过渡到这一类工程应用题,从旧知到新知,实现知识的正迁移。这不仅体现了知识间的联系,同时也符合学生的认识规律,促使学生形成良好的认知结构。
2、尝试探索突破难点
工程应用题的难点是:为什么要把工作总量看作单位“1”。教学时我创设情境,让学生解答一组工程应用题,通过学生大胆尝试探索,使学生认识到把具体工作总量看作单位“1”,计算简便。这样不仅突破了工程应用题的难点,同时为今后解答分数应用题拓宽了思路。
3、自学讨论质疑解惑
本节课我设计了四组应用题,引导学生质疑,(公路长度不同为什么时间都是6天),这时敢于把新问题交给学生,这样不仅激发了学生学习的兴趣,调动起学生的学习积极性。而且有利于突出重点和难点。锻炼了学生思维能力和口头语言表达能力。充分发挥学生的主体性。
4、巩固发展层次分明
为了进一步巩固和完善所学知识,我从理解、熟练、提高三点出发,精心设计练习题,整个教学体现了教师是学生学习的组织者、帮助者、促进者,充分发挥了学生的潜能,培养了学生探索能力,而且激发了学生的学习兴趣。
教学需要教师灵活运用教材,创造性将教材内容转换成生活问题,并引导学生自主参与教学活动的教学技巧,在师生共同努力下,才能使数学教学成为真正的数学活动的教学。
一、这节课中,我主要在以下几方面做了努力:
1、创设情境,激发学生学习兴趣。
首先是教师精心创设了学生主动探索的教学情境。教师先通过故事谈话引入,并创设以下情境:现在我们镇政府正要准备修一条1200米长的公路,今天一早有两个工程队找到了镇长。第一工程队说如果我们修要15天完工,第二个工程队说如果我们修要10天完工。如果你是镇长会怎么办呢?其次让学生先是小组讨论,学生一定会找出很多的答案,让小组讨论汇报选出最好的答案,那就是由两个队合做。这样安排首先是帮助镇长选择工程队,激活了学生的生活经验,引发了学生的个性思维,其次激活了学生的知识经验渗透了数量关系。
2、培养学生的“自主探索”能力
教师让学生大胆的猜测,工作总量如果由现在的1200米变成2400米以后,合作时间会是几天?学生几乎异口同声地回答“12天”,出现这种错误的原因我觉得是因为学生没去认真地思考,只是根据常规的想法,1200米要6天,哪2400米一定是12天了。接着教师引导学生亲自算一算,使学生懂得不管工作总量怎样变,第一工程队的工作效率总是占总量的1/15,第二工程队的工作效率总是占总量的1/10,两队的工作效率和总是占总量的1/6,所以两队合修的天数始终是6天。然后利用这一点培养学生合情猜测,合理估算的能力,是国家课程标准所积极倡导的,这一环节的安排,对于培养学生的数感,激发学生的探索兴趣是尤为重要的。
使学生亲身经历这种探索的过程,同时找出合作时间不变的原因,从而培养了学生严谨的学习态度,通过运用实际数量解题的思路迁移到单位“1”的难点渗透,用分数解题的方法,在学生的头脑中已经形成,所以教师只要提供给学生机会,让学生自己去探索、去研究总结出解题的方法即可。并适时地评价,鼓励、使学生的探索欲望越来越强烈,从而他们的潜能、创造力也得到张扬,真正体现了学生主体的教学原则。
3、在练习中用所学的知识解决生活中的实际问题。
我在练习题的设计中,一道题目都力求创设一种生活情境,将所学的数学知识与学生的生活实际紧密地联系起来,把生活中的题材引入到数学课堂之中,组织学生有兴趣地思考与学习,使学生体验到数学课堂之中,感悟数学的普遍性,更重要的是让学生体会到了解决生活的实际问题的乐趣。
在情境之中教与学,不只是学生学得投入,学得高兴,老师也感觉教得轻松。
二、不足之处,及今后努力的方向。
我发现有部分学生的参与程度不高,只能跟着老师及同学完成一些活动,缺乏创造性。苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要也特别强烈。因此,今后我一定要努力创建有利于全体学生主动探究的学习环境,让每个学生参与探究实践,增强课堂互动。使每个学生都能参与到课堂活动当中去,使每个学生都能得到发展。
此外,在今后的工作中,还要加强业务学习,努力提高自己的文化素质,勤练基本功,多看教育方面的书籍,努力使自己成为一个有创新意识和创新精神的合格教师。
总之,在教学过程中创设生活情境,拉近了数学学习和生活的距离,学生在这一情境之中,主动地利用已有的知识去探索,去发现,理解并学会了新知识。并在学习过程中,学会了与同学合作,独立思考,积极主动地解决问题的方法。
您现在正在阅读的六年级数学《工程问题》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!六年级数学《工程问题》教学反思工程问题是研究工作总量、工作效率和工作时间三者之间关系的一个数学问题。它与研究这三个量之间关系的整数工作问题的解题思路相同,不同的是工程问题的工作总量和工作效率没有直接指明,解题时要用单位1表示工作总量,用单位时间内完成工作总量的几分之一表示工作效率。这是工程问题的基本特征也是教学难点。在教学中我努力创设情境,先安排了一道工作总量已知的比较简单的工程问题的应用题。例如:工程队修一条长1800米的公路,甲队单独做需要12天完成,乙队单独做需要12天完成。甲、乙合作需要几天完成?让学生进行解答,在此基础上,让学生说说你是怎么想的?又是怎么做的?然后,我把工作总量1800米该为3600米,让学生猜一猜,现在甲、乙合作需要几天完成呢?学生们非常激动,有的说,太简单了,不用计算我就知道了;有的学生把手举的高高,想回答。有的学生切切私语。我马上让学生回答,第一个学生回答的是工作总量是原来的2倍,那么,合作工作时间肯定是原来的2倍。第二个学生马上回答说合作工作时间和原来的.是一样的。
乘此机会,我又追问你有办法证明合作时间没有变吗?这为学生马上说有。于是他用了刚才的这种计算方法证明了工作时间没变,其他学生心服口服。而后,我又问学生如果工作总量变900米,现在甲、乙合作需要几天完成呢?当我问题一说出,学生就说,现在不会上当了,当然还是和原来的一样啦?那么就请你们计算一下?计算出来结果还是和原来一样。于是,我就设下疑问,为什么工作总量变了,合作的工作没变呢?通过四人小组合作,并交流,然后,在小结时我又把学生说的用多媒体展示了一下,这样学生明白了工作总量不管怎样变化,只要两队单独完成的工作时间没变,两队合作的工作时间也是不变的道理。在此基础上,我将工作总量抽象为一项工程,由此导入新课,然后,让学生进行尝试练习。
总之,在整个教学过程中,我以学生学习的组织者、帮助者、促进者出现在他们的面前,学生不仅发挥了他们的自主潜能,培养了他们的探索能力,而且激发了学生学习兴趣。学生学的开心,教师教的快乐。
工程问题是研究工作总量、工作效率和工作时间三者之间关系的一个数学问题。它与研究这三个量之间关系的整数工作问题的解题思路相同,不同的是工程问题的工作总量和工作效率没有直接指明,解题时要用单位“1”表示工作总量,用单位时间内完成工作总量的几分之一表示工作效率。这是工程问题的基本特征也是教学难点。在教学中我努力创设情境,先安排了一道工作总量已知的比较简单的工程问题的应用题。例如:工程队修一条长1800米的"公路,甲队单独做需要12天完成,乙队单独做需要12天完成。甲、乙合作需要几天完成?让学生进行解答,在此基础上,让学生说说你是怎么想的?又是怎么做的?然后,我把工作总量1800米该为3600米,让学生猜一猜,现在甲、乙合作需要几天完成呢?学生们非常激动,有的说,太简单了,不用计算我就知道了;有的学生把手举的高高,想回答。有的学生切切私语。我马上让学生回答,第一个学生回答的是工作总量是原来的2倍,那么,合作工作时间肯定是原来的2倍。第二个学生马上回答说合作工作时间和原来的是一样的。乘此机会,我又追问你有办法证明合作时间没有变吗?这为学生马上说有。于是他用了刚才的这种计算方法证明了工作时间没变,其他学生心服口服。而后,我又问学生如果工作总量变900米,现在甲、乙合作需要几天完成呢?当我问题一说出,学生就说,现在不会上当了,当然还是和原来的一样啦?那么就请你们计算一下?计算出来结果还是和原来一样。于是,我就设下疑问,为什么工作总量变了,合作的工作没变呢?通过四人小组合作,并交流,然后,在小结时我又把学生说的用多媒体展示了一下,这样学生明白了工作总量不管怎样变化,只要两队单独完成的工作时间没变,两队合作的工作时间也是不变的道理。在此基础上,我将工作总量抽象为“一项工程”,由此导入新课,然后,让学生进行尝试练习。
总之,在整个教学过程中,我以学生学习的组织者、帮助者、促进者出现在他们的面前,学生不仅发挥了他们的自主潜能,培养了他们的探索能力,而且激发了学生学习兴趣。学生学的开心,教师教的快乐。
精选工程问题应用题教案
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系,工程问题应用题。
2、掌握一般工程问题的结构特征。
3、学会解题方法,会正确解答一般的工程问题。
教学重点:学会解题方法,会正确解答一般的工程问题。
教学难点:理解比较抽象的工作总量、工作效率、工作时间的数量关系。
教学准备:投影片。
教学过程:
一、复习准备:
1、口答,并说出数量关系式。
(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=工作效率
2、回答,说说你是怎么想的。
(1)加工一批零件,甲用4小时完成。平均每小时完成这批零件的几分之几?
(把工作总量看作“1”)
(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。
①甲队独修,每天完成全工程的( )。
②乙队独修,每天完成全工程的( )。
③两队合修,每天完成全工程的( )。
小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。
二、教学新课。
1、出示例2.(小黑板)
一项工程,由甲工程队单独施工,需8天完成,小学数学教案《工程问题应用题》。由乙工程队单独施工,需要12天完成。两队共同施工需要多少天完成?
(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?
(2)学生尝试做,并同桌交流。
(3)反馈说明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作总量看作“1”,两队的工作效率就是+。)
教师:如果不把工作总量看作“1”,而是看作2、3、5、10……结果会怎样?
学生任选一个数列式计算。
小结:计算结果是一样的。不过看作“1”是最简捷、最常用的`。
2、练一练。
(1)填空。
①甲做一项工作需5天完成,每天完成这项工作的( ),3天完成这项工作的( )。
②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。两队合做,一天可以完成这项工程的( ),( )天可以完成。
(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?
(全班练,抽学生写在投影片上,同桌互说是怎么想的)
3、小结:四人小组讨论。刚才练的题有什么特点?我们是怎么解的?
教师:这就是我们今天学的工程问题。(出示课题)
三、巩固练习
1、变式练习
打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。
(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?
(2)三人合打一小时后,还剩下几分之几?
(3)甲、乙、丙三人合干,几小时可以完成?
(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?
(四人小组交流,想想还可以提出哪些问题并解答。)
2、看书,质疑。
四、教学小结:今天我们学习了什么?你是怎样来解答这些应用题的?
五、作业:《作业本》P70[67]
略
工程问题就数量关系而言学生理解起来不是很难,这节课的难点主要是学生一下子难以接受用分率进行分析解题,比较抽象,学生初次接触需要有一个适应的过程。工程问题被许多老师研究过,也看到过各种各样有特色的设计,有的先进行分率方面的铺垫再进入研究,有的出示工作总量是具体数量的工程问题直接研究,通过变幻数量的大小,让学生发现工作时间始终不变,从而转入真正的工程问题。但到最后总让学生感觉不到简单。不管如何设计,有一点是相同的即让学生把具体数量和分率两种不同方法的相似点一定要揭示出来,另外,用分率解的思考的参照物应是用数量解的思路。
基于以上的情况,我设计了本堂教研课的思路:修一条千米的路,甲队单独完成要10天完成,乙队单独完成要15天完成,两队合作,要几天完成?这样一个问题作为研究的材料,这条路的长路由学生自己补充。我自认为这样设计有以上几方面的优点:1、让学生在决定这条路的长度的过程中,他们要进行估计和计算,因为不是随便哪个数都能除尽的,学生在选择的过程中可以培养数感。2、这条路的长度就一个班的学生而言一定是多种多样,学生汇报出来的数量也一定很多,这样就不用老师多费口舌变幻各种数据,可以节省更多的时间来理解这节课的难点:为什么这条路的总长变了而合做的时间却不变?从而为引出把单位“1”看作路的总长作了良好的铺垫。
原本想,学生在汇报时应该是精彩纷呈的,但学生在独立尝试时却发现大部分学生用1作为这条路的总长,而且几乎找不出用具体数量计算的。这是什么原因呢?难道我们班的学生格外聪明吗?肯定不是的,下课后通过了解才知道,因为布置家庭作业中拓展题涉及到了工程问题,老师没教过中等及中等偏上的学生进行了自学,所以出现了我没教就已经会用单位1来解了。这种半生不熟的课真的好难上。我们是同磨一节课,这样的细节应作为一个重要内容进行研究,是放一放还是出现就解决呢?看来还得通过试验才能知道。
六年级折扣问题应用题
一、填空。
1.几折表示十分之( ),也就是百分之( )。
2.五折就是( ),也就是( )。
3.六成就是( ),表示( )是( )的( )。
4.一折=( )% 半折=( )% 七三折=( )%
5.现价=( )×( )
6.七成五=( )%=( )(小数)=( )(分数)
7.今年的玉米产量比去年增加一成,也就是今年的玉米产量是去年的( )%。
8.四成是十分之( ),改写成百分数是( );八成七改写成百分数是( );五成五改写成百分数是( )。
9.一件衬衫的进价是28元,出售时加价一成五,售价是( )元。
10.15÷20=?=( )℅=( )(填折数)=( )(填成数)
11、商品( )折出售就是按原价的65%出售。
12、五折是指现价是原价的( )%。
13、一种商品八折销售,现价比原价便宜了( )%。
14、一块玉米地,今年比去年增产一成,今年的产量是去年的( )%。
二、选择
1、一辆自行车原价450元,现在只花了九折的钱。现价比原价便宜了( )元。
A、405 B、45 C、440
2、一种童装原价每套120元,现价为96元,打了( )。
A、八折 B、八五折 C、九折
3、一种洗衣机现价每台1200元,是把进价加二成五后确定的,它的进价是每台( )元。
A、1000 B、960 C、1050
三、判断。
1.五成八改写成百分数是5.8%。( )
2.商品打折扣都是以商品的原价为单位“1”,即标准量。 ( )
3.兴华镇今年的蔬菜产量比去年增产四成,这里的四成是把去年的蔬菜产量看作单位“1”。
4.一件上衣现在打八折出售,就是说比原价降低l0%。 ( )
5.一个足球打九折再加价10%,价格比原来便宜。( )
6.一双80元的鞋,先打八折,再加价25%,现价比原价贵。( )
四、选择题
1、一件衬衣打6折,现价比原价降低 ( )。
A.6元 B.60% C.40% D.12.5%
2、某品牌牛仔裤降价15%,表示的意义是( )。
A.比原价降低了85% B.比原价上涨了15% C.是原价的85%
3、一条裙子原价430元,现价打九折出售,比原价便宜( )元。
A.430×90% B.430×(1+90%) C.430×(1-9%) D.430×(1-90%)
4、保温杯的价格是100元,打八折销售,买两个这样的保温杯比原来便宜( )元。
A.20 B.80 C.40 D.160
五、解决问题
1、家电商场店庆日。全场商品一律八五折。
电视机7900元 冰箱3480元 洗衣机620元 微波炉475元 1)打折后,买台冰箱可以节省多少钱?
2)节省的钱能买一台洗衣机吗?
3)聪聪家买一台电视机和一个微波炉共用多少钱?
2、商场促销打九折出售,VIP会员在降价的基础上再打八折,原价200元的商品,现价卖几元?
3.去年王村共收水稻48吨,今年收的水稻比去年增产二成。今年的产量是多少吨?
4、光明小学有学生1600人,只有1成的学生没有参加意外事故保险。参加了保险的学生有多少人?
5、一套“雅戈尔”西服进价800元,标价1200元,如果按标价打九折出售,实际能赚多少元?
6.原价180元一套的画笔,现在书店打八五折出售,小辛买这套画笔花了多少钱?
7.小辛在商店的六折区挑中一个标价50元的水杯,那么,小辛买这个水杯比原价少付多少元?
8.王大爷的玉米地去年产玉米4050千克,他预计今年能比去年的收成增收二成,预计今年能产玉米多少千克?
9.商场搞打折促销,其中服装类打5折,文具类打8折。小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?
10.某商场在“十·一”期间搞促销活动,所有的商品七折优惠,某品牌的上衣的.原价是每件840元,购买一件这样的上衣可以节省多少元?
11.小华要买6张贺卡一张10元.由于贺卡减价20%,她省掉了多少元?
12.李大爷的一块农田去年种水稻,产量是1000千克,今年改种新品种后,产量比去年增产三成,今年的产量是多少千克?
13.华联超市迎“五 一”进行促销,百事可乐买10赠3,文峰超市也进行促销,百事可乐打七折销售,两家超市每听百事可乐都标价3元。六(二)班要买40听百事可乐,在哪家超市买比较合算?
14.和平家电商场周年店庆,全场九折,友谊商场购物满1000元送100元现金。如果买一台标价5800元的电脑,在哪家商场购买合算?
15.一个书包七五折销售是24元,原价是多少元?比原价便宜了多少元?
16.一件上衣零售价240元,它是把进价加二成确定的,这件上衣的进价是多少元?
17、某小区的楼房每平方米元,现在要八折销售,丫丫家要在这个小区买一套80平方米的房,可节省多少万元?
18、一个种植大户去年收玉米10万千克,预计今年比去年增产一成五,预计今年可收玉米多少万千克?
19、一种鞋在甲、乙、丙三个鞋城原价相同,现在他们同时搞促销活动。甲鞋城的鞋一律八折出售,乙鞋城的鞋一律九折出售,购物100元以上还返15元现金,丙鞋城的鞋一律九折出售,若满200元打七五折。
1)若买一双原价180元的旅游鞋,应选哪个鞋城?
2)若买一双原价350元的皮鞋,应选哪个鞋城?能节省多少钱?
4.2.10工程问题应用题
教学目标 :
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。
2、掌握一般工程问题的结构特征。
3、学会解题方法,会正确解答一般的工程问题。
教学重点:学会解题方法,会正确解答一般的工程问题。
教学难点 :理解比较抽象的.工作总量、工作效率、工作时间的数量关系。
教学准备:投影片。
教学过程 :
一、复习准备:
1、口答,并说出数量关系式。
(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=工作效率
2、回答,说说你是怎么想的。
(1)加工一批零件,甲用4小时完成。平均每小时完成这批零件的几分之几?
1÷4=
(把工作总量看作“1”)
(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。
①甲队独修,每天完成全工程的( )。
②乙队独修,每天完成全工程的( )。
③两队合修,每天完成全工程的( )。
小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。
二、教学新课。
1、出示例2.(小黑板)
一项工程,由甲工程队单独施工,需8天完成。由乙工程队单独施工,需要12天完成。两队共同施工需要多少天完成?
(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?
(2)学生尝试做,并同桌交流。
(3)反馈说明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作总量看作“1”,两队的工作效率就是+。)
教师:如果不把工作总量看作“1”,而是看作2、3、5、10……结果会怎样?
学生任选一个数列式计算。
小结:计算结果是一样的。不过看作“1”是最简捷、最常用的。
2、练一练。
(1)填空。
①甲做一项工作需5天完成,每天完成这项工作的( ),3天完成这项工作的( )。
②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。两队合做,一天可以完成这项工程的( ),( )天可以完成。
(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?
(全班练,抽学生写在投影片上,同桌互说是怎么想的)
3、小结:四人小组讨论。刚才练的题有什么特点?我们是怎么解的?
教师:这就是我们今天学的工程问题。(出示课题)
三、巩固练习
1、变式练习
打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。
(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?
++=
(2)三人合打一小时后,还剩下几分之几?
1-=
(3)甲、乙、丙三人合干,几小时可以完成?
1÷(++)=4(小时)
(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?
(+)×5=
(四人小组交流,想想还可以提出哪些问题并解答。)
2、看书,质疑。
四、教学小结:今天我们学习了什么?你是怎样来解答这些应用题的?
五、作业 :《作业 本》P70[67]
工程问题应用题带答案
例1:
一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
解题思路:
设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
解二 上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7
所以,这批零件共有 24÷1/7=168(个)
例2:
一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
解题思路:
必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=560÷10=6 60÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
也可以用(1-1/12*2)/(1/10+1/15)
例3
一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
解题思路:
注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的`流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同。由此可知
一池水的总工作量为 1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为 1×2,
所以,2小时内注满一池水
至少需要多少个进水管? (15+1×2)÷(1×2)=8.5≈9(个)
【数量关系】
解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】
变通后可以利用上述数量关系的公式。
4、一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?
答:
8除4/5=10(km/)
4/5除8=0.1(kg)
5、一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?
答:
30÷1/2=60千米
1÷60=1/60小时
6、电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
答:
原价是
200÷2/11=2200元
现价是
2200-200=元
7、一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?
答:
4/5*5/8=(4*5)/(5*8)=1/2(米)
4/5-1/2=8/10-5/10=3/10(米)
8、水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?
答:
第一天卖出水果总重量的3/5,则,第二天卖了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5
3/5-2/5=1/5
30÷1/5=150千克
1、话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。第一天吃了全部蟠桃的4分之1多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1个,第4天只有1个了。问孙悟空共摘了多少个蟠桃?
第三天吃之前有:
(1+1)÷[1-(1/4)]=4个
第二天吃之前有:
(4+2)÷[1-(1/3)]=9个
孙悟空共摘了:
(9+3)÷[1-(1/4)]=16个
答:孙悟空一共摘了16个桃子。
其实这是一个还原问题。用倒推法。
话说孙悟空看管蟠桃园,他摘了一推蟠桃,打算4天吃完。第一天吃了全部蟠桃的4分之1多3个,第二天吃了剩下蟠桃的3分之1多2个,第三天吃了此时蟠桃的2分之1多1个,第4天只有1个了。问孙悟空共摘了多少个蟠桃?
第三次2分之1多1个,还剩一个。
那么就可以看出剩下1个的加上多的1个,就是(1-2分之1),1指的是单位“1”
2分之1是2个,那么第三次之前就有2+2=4个
同样,第二次吃了3分之1多2个,还剩4个,就说明多的2个加上4个就是第二次的3分之2.
如此类推。
2、商店有一批布,第一天卖出2/9,第二天卖出余下的1/7,第三天补进了第二天剩下的1/2,这时还有存布698米。问原来有布多少米?
答:
第一天后剩下:1-2/9=7/9
第二天卖出的:7/9×1/7=1/9
两天后剩下:7/9-1/9=6/9
第三天补进的:6/9×1/2=1/3
与698对应的分率是:6/9+1/3=1
所以原有布应该是:698米。
3、甲、乙两地间的公路全长500千米,平路占1 / 5,从甲到乙上山路程是下山的2 / 3,一汽车从甲到乙共用10小时,汽车上山速度比平路速度慢20%,下山速度比平路速度快20%,汽车从乙到甲要多少小时?
答:
据题意,平路长为100千米,所以上山长为: ( 500 - 100)*2/5=160千米,下山长为400-160=240千米
设汽车在平路上的速度为x (千米/小时)
那么上山时的速度为: x-x*20%=0.8x
下山时的`速度为 : x+x*20%=1.2x
从甲到乙用时为:
100/x+160/0.8x+240/1.2x=10 化简后:500/x=10
解出x=50千米/小时
所以上山速度为:0.8*50=40千米/小时
下山速度:1.2*50=60千米/小时
从乙到甲时上山为240千米,下山为160千米
所以此时用时为:
100/50+240/(0.8*50)+160/(1.2*50)=10又2/3小时
回答者: 天灵楚 - 一级 -2-27 20:39
1.光明畜牧场养了900头肉牛。奶牛比肉牛多25%,奶牛有多少头?
900×(1+25%)
=900×125%
=900×125/100
=1125(头)
第十一册工程问题应用题
4.2.10工程问题应用题
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。
2、掌握一般工程问题的结构特征。
3、学会解题方法,会正确解答一般的工程问题。
教学重点:学会解题方法,会正确解答一般的工程问题。
教学难点:理解比较抽象的.工作总量、工作效率、工作时间的数量关系。
教学准备:投影片。
教学过程:
一、复习准备:
1、口答,并说出数量关系式。
(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=工作效率
2、回答,说说你是怎么想的。
(1)加工一批零件,甲用4小时完成。平均每小时完成这批零件的几分之几?
1÷4=
(把工作总量看作“1”)
(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。
①甲队独修,每天完成全工程的( )。
②乙队独修,每天完成全工程的( )。
③两队合修,每天完成全工程的( )。
小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。
二、教学新课。
1、出示例2.(小黑板)
一项工程,由甲工程队单独施工,需8天完成。由乙工程队单独施工,需要12天完成。两队共同施工需要多少天完成?
(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?
(2)学生尝试做,并同桌交流。
(3)反馈说明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作总量看作“1”,两队的工作效率就是+。)
教师:如果不把工作总量看作“1”,而是看作2、3、5、10……结果会怎样?
学生任选一个数列式计算。
小结:计算结果是一样的。不过看作“1”是最简捷、最常用的。
2、练一练。
(1)填空。
①甲做一项工作需5天完成,每天完成这项工作的( ),3天完成这项工作的( )。
②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。两队合做,一天可以完成这项工程的( ),( )天可以完成。
(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?
(全班练,抽学生写在投影片上,同桌互说是怎么想的)
3、小结:四人小组讨论。刚才练的题有什么特点?我们是怎么解的?
教师:这就是我们今天学的工程问题。(出示课题)
三、巩固练习
1、变式练习
打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。
(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?
++=
(2)三人合打一小时后,还剩下几分之几?
1-=
(3)甲、乙、丙三人合干,几小时可以完成?
1÷(++)=4(小时)
(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?
(+)×5=
(四人小组交流,想想还可以提出哪些问题并解答。)
2、看书,质疑。
四、教学小结:今天我们学习了什么?你是怎样来解答这些应用题的?
五、作业:《作业本》P70[67]
一、说教材
工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。
教学重点是:掌握工程问题的数量关系和解答方法。
难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。
二、说教法
现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。
三、说学法。
教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。
四、说教学过程。
根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。
第一环节是复习铺垫。
由于用分数解工程问题与整数解工程问题的`思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。
第二环节是学习新知识,分三步进行。
第一步:加深对整数解工程问题的数量关系的理解。
出示:三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?
引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。
第二步:探究用分数解工程问题。
这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。
第三步,比较分数解和整数解工程问题,加深印象。
比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。
第四环节是练习、巩固。
练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。
教学目标:
1、了解工程问题的结构特征及数量关系,学会解答比较简单的工程问题。
2、在主动参与、发现和揭示数学原理和方法中提高思维水平。
教学流程
一、复习铺垫
1、谈话:
同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。
2、出示:
(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。
(2)如果这项工程每天完成 ,( )天完成。
3、揭题:
在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。
二、探究新知
1、谈话:
如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。
问:(1)如果你是校长,你选择哪个施工队?为什么?
(2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?
2、出示:
三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。
(1)独立解题 200÷(200÷10+200÷8)= 4 (天)
(2)交流反馈、小结数量关系式:
讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?
板书(工作总量÷工作效率和=合作工作时间)
(3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。
400÷(400÷10+400÷8)=4 (天)
800÷(800÷10+800÷8)= 4 (天)
(4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?
3、出示:
例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?
(1)分析思考:A、工作重量不知道怎么办?
B、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?
(2)怎样列式。(尝试)。
(3)交流说说 。1÷( + )中。 、各表示什么? + 又表示什么。“1”
工程问题是小学阶段比较抽象的一类应用题。最近,这几个单元的学习有没有再涉及有关的工程问题。所以在做综合题的时候,有不少同学看到工程问题都没有思路了。我针对这个情况,先让学生打开课本,找到第三单元分数除法工程问题的.例题,让学生先看一遍例题,然后让学生说一说对例题的理解,也就是复习一遍。例题:修一条公路,如果一队单独修需要12天修完,如果二队单独修18天修完,那么两队一起修几天能修完?学生很容易根据课本列出算式,但是我会为了进一步复习工程问题,问1/12表示什么意思?这个问题主要提问程度中等偏下的孩子,还真的是说不出来表示表示什么,让其他孩子补充,我有再强调了一遍。把整个工程也是这条公路看作单位“1”也就是工作总量是1,工作时间是12天。根据工作总量÷工作时间=工作效率,所以1/12就表示一队的工作效率。那1/18呢?问程度比较差的那几个孩子,真的听课了知道1/18表示二队的工作效率。那么要求合作的工作时间,也就是用工作总量÷工作效率=工作时间。这样既复习了例题也仔细的复习了算式的意义。
接着,让学生说一说同步上的那个工程问题。题目是这样的:一堆货物,如果甲车单独运需要6次,如果乙车单独运需要8次,如果两辆车一起运,几次能运完?这个题目是把这堆货物看作单位1,甲车一次运总数的1/6,乙车一次运总数的1/8,所以1÷(1/6+1/8)就表示合作的工作时间。
工程问题教学的反思
工程问题属于小学阶段较典型且较重要的一类应用题。课始,我让学生进一步了解:工作总量/工作效率=工作时间.为新知识的展开作了解题思路的铺垫。同时让学生初步掌握工作总量、工作效率,不是具体数量时,应如何表示的方法。从知识上为学习工程问题作了适当的铺垫。课时,我让学生“估一估”,“算一算”,“列一列”,教师再“点一点”,“拔一拔”,学生也算是自主探索,完成了新知识的的.学习。课后,我进行反思,觉得应为学生创设主动探索的情境,会效果更好.如在例题出示前先让学生试做一个准备题:一条公路长60千米,甲队单独完成需要20天,乙队单独做要30天,两队合做,要多少天完成?然后改变题中的条件,工作总量为120千米、30千米,其它条件不变,让学生猜测:两队合做多少天完成?(学生肯定会有争议),接下来让学生分组讨论,合作完成。最后擦掉具体的工作总量,把它改成一件工程,让学生尝试完成。这里,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性。让学生在实践中获得解决问题的方法,得到学习的乐趣。
《应用题》教学反思
1、教师创造性地处理教材是实施创新教育的关键。本环节中我将原例题中的问题省掉,不出现题目的问题;就这么一改,一个与学生实际水平相适应的开放性问题产生了,一个与“问题解决”教学要求相符的探索性问题便设计出来了,也就是这样小小的一改,给学生提供了一种良好的创新环境,教学过程便发生了质的变化。学生可以自由地、多角度地进行思考,有旧知的回顾与应用、有新知的.猜想与探索,教师一没有“牵牛”,二没有“放羊”,学生创新能力的培养得到了有效的保证。
2、关注学生独特的体验《数学课程标准》把数学活动水平的过程性目标定位在“经历、体验、探索”,可见在创新教育的大前提下,我们只有充分发挥学生的主体作用,让学生置身于一定的情境中,经历之,感受之,考察之,不仅要用“脑”去学习,而且要调用各种感官去体验、感受。由于学生的个体差异,在数学探究活动中,学生会有不同的感受和体验,对问题也会出现不同的理解和看法,如,同样是说明“这个乡造林任务完成得相当好”,不同的同学有不同的想法。这些都是学生积极投身和亲历探究实践之后所获得的,我们更应该珍视。
3、体现教师主导,学生整个过程我的言语不多,遇到问题能让学生解决的尽量让学生自己解决。我只是一个组织者、引导者和参与者。学生所学知识不是我的生硬灌输,而是学生在自身知识结构的基础上,在我的“无形”帮助下自然悟到。"这样处理达到了事半功倍的效果,不但很好地完成了例题的教学,而且将例题后要求改变问题的题目也自然地得以解决。
一年级数学教学中是很重要的内容之一是图文应用题,这类应用题是学习文字应用题的基础。在图文应用题教学中,引导学生理解画面意思在课堂教学中特别重要。下面谈谈我是如何进行图文应用题教学的:
1、教学要直观明了。
由于一年级的学生识字少,以形象思维为主,对直观、操作感兴趣,因此教学必须运用好直观手段,帮助学生去感知、理解画面意思。例如我在教学过程中,通过出示小鹿图,让学生仔细观察,要求学生用三句话完整说出题意,通过观察、口述,使学生弄清图中的已知条件和要求的数量,再此基础上去进行列式计算。并总结出解题4个步骤:一看题目,二想方法,三列式计算,四检查。教会学生找单位名称和回答问题,因为课本每一道例题都没写单位和回答问题,这样对以后学习应用题是不利的,要很长时间来训练,到不如在开始学习时应用题时就要求学生有完整的解答。
2、应用题教学应重视算理、理解含义。
应用题启蒙教学应当重视算理,揭示算法的含义,避免教学加减法应用题时,让学生硬搬“求一共用加法”和“还剩用减法”这一模式。怎么使学生的思维更加灵活呢,比如在刚刚进行图画应用题的教学时,我利用教具进行操作使学生明白把两个数合在一起是用加法计算和从一个数里去掉一部分求另一部分用减法。在教学中每道题我都要求学生说一说为什么用加法、为什么用减法计算,逐步强化算理,培养了学生的思维、分析能力
3、数学语言训练
图文应用题要有数学语言训练,如:人教版下册61页求一包数学书和一包语文书一共有多少本?就是把35和30合起来,所以用加法计算。又如72页例3:小雪比小磊多得几朵?就是求12比8多几?所以用减法计算。把问题转化为数学语言表达,学生理解题意较为好一些。
★ 工程问题应用题教学设计人教版
★ 《相遇应用题》教学反思
★ 比例分配应用题教学反思
★ 分数除法应用题教学反思
★ 应用题教学
★ 六年级100应用题及答案
★ 《分数除法应用题》六年级教学设计
★ 《植树问题》教学反思
★ 租船问题教学反思
★ 植树问题教学反思
Copyright @ 2015-2022 快报网版权所有 备案号: 豫ICP备20009784号-11 联系邮箱:85 18 07 48 3@qq.com